# Multiplication Table

## Interactive multiplication table for mathematics.

x 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 14 16 18 20 22 24
3 3 6 9 12 15 18 21 24 27 30 33 36
4 4 8 12 16 20 24 28 32 36 40 44 48
5 5 10 15 20 25 30 35 40 45 50 55 60
6 6 12 18 24 30 36 42 48 54 60 66 72
7 7 14 21 28 35 42 49 56 63 70 77 84
8 8 16 24 32 40 48 56 64 72 80 88 96
9 9 18 27 36 45 54 63 72 81 90 99 108
10 10 20 30 40 50 60 70 80 90 100 110 120
11 11 22 33 44 55 66 77 88 99 110 121 132
12 12 24 36 48 60 72 84 96 108 120 132 144
x 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 14 16 18 20 22 24
3 3 6 9 12 15 18 21 24 27 30 33 36
4 4 8 12 16 20 24 28 32 36 40 44 48
5 5 10 15 20 25 30 35 40 45 50 55 60
6 6 12 18 24 30 36 42 48 54 60 66 72
7 7 14 21 28 35 42 49 56 63 70 77 84
8 8 16 24 32 40 48 56 64 72 80 88 96
9 9 18 27 36 45 54 63 72 81 90 99 108
10 10 20 30 40 50 60 70 80 90 100 110 120
11 11 22 33 44 55 66 77 88 99 110 121 132
12 12 24 36 48 60 72 84 96 108 120 132 144

## Principles of Multiplication:

The Commutative Property of equality states that when multiplying two or more numbers, it does not matter which is first or second, as the product (answer) always remains the same.

a * b   =   b * a

Example 1:     3 x 7 = 21     and     7 x 3 = 21

Example 1:

3 x 7 = 21

and

7 x 3 = 21

Example 2:     4 x 5 = 20     and     5 x 4 = 20

Example 2:

4 x 5 = 20

and

5 x 4 = 20

The Associative Property of equality states that numbers can be grouped in any combination to arrive at the same product (answer).

a * (b * c)   =   (a * b) * c

Example:

2 x (4 x 5)   =   40   =   (2 x 4) x 5

2 x (20)   =   40   =   (8) x 5

Example:

2 x (4 x 5) = 40

(2 x 4) x 5 = 40

The Identity Property of equality states that the product of any number and 1 is itself.

a * 1 = 1

Example:     9 x 1 = 9

The Zero Property of equality states that the product of any number and zero is 0.

a * 0 = 0

Example:     8 x 0 = 0